Rap Use In-Illinois

January 10th 2007 North Central Asphalt User/Producer Group

Dan Gallagher Gallagher Asphalt Corp. Thornton, Illinois

Background RAP Classification Processing

Batch vs. Drum
Where we use it

Savings
What lies ahead

Quiz Question.. Who said This???

"Our experience to date has shown that recycling of asphalt pavements offers a design alternative that provides the state a cost effective and energy efficient method of utilizing existing resources, while at the same time not sacrificing the quality of the resulting pavement system."

Plant Locations

Gencor 600TPH

Plant Locations

Gencor 425TPH

100,000 Tons In Thornton

50,000 Tons in Joliet

Hinois History 1980's

80's Started Milling Program

shoulders

Milling guidelines for plans
RAP is property of contractors
Policies allowed reuse of RAP back into binders lower lifts, surface and

GALLAGHER ASPHALT

Hinois History 1990's

SuperPave Mixes start without RAP

 As SuperPave became more common in use RAP stockpiles

began to grow.
 Late 90's SuperPave Mixes allowed

to use RAP

Illinois History New Millennium Developed RAP policy for SuperPave

 Review of piles found many contractors had poor RAP handling

storage practices

 IDOT Added controls to allow more usage (stockpiling and crushing)

How do you handle incoming RAP?

Check Loads carefully before allowing them to dump

Coarse Aggregate Quality

Test	Α	В	С	D
NaSO4 Soundness	15	15	20	25
LA Abrasion- Max loss	40	40	40	45
Max % Deleterious				
Shale	1.0	2.0	4.0	-
Clay Lumps	0.25	0.5	0.5	-
Coal & Lignite	0.25	-	-	-
Soft and Unsound	4.0	6.0	8.0	-
Other Deleterious	4.0	2.0	2.0	-
Total Deleterious	5.0	6.0	10.0	-

Incoming RAP Handling Procedures Best Practices

 Construction crew Foreman (Milling crew or demo crew) contacts Plant Foreman with RAP material information (location, type of pavement, thickness removed)

 Accepting RAP with significant contamination (dirt, grass, concrete, clay, etc.) is prohibited by plant policy.

Plant Foreman determines the type of RAP (homogeneous/conglomerate/other) and where to stockpile.

Plant Foreman notifies Scale Clerk and Yard Loader Operator of incoming material type.

Incoming RAP Handling Procedures Best Practices

 Scale Clerk instructs incoming RAP truck drivers where to dump material and tickets the incoming material loads to track RAP inventory by type.

 Plant Loader Operator monitors quality of incoming material as trucks are dumping and he stockpiles the material. If any problems are observed the Loader Operator notifies the Plant Foreman for corrective action.

Incoming RAR Handling Procedures Best Practices

7. The Scale Clerk prints the daily plant report and highlights all incoming RAP with the proper classification (homogeneous/conglomerate/other). The reports are kept in a three ring binder in the Plant Ticketing Office to fulfill IDOT tracking requirements.

 RAP is processed by type into separate processed stockpiles. The Plant Loader Operator is instructed by the HMA Plant Operator which material to feed the plant per the mix design requirement of the HMA.

RAP LOG - THORNTON YARD

DATE	TONS		LOCATION OF RAP	TYPE OF RAP
4/5/2006	1290	68	GE06801 KEDZIE AVE /OLYMPIAN WAY	CONG
4/7/2006	1631	78	GE06801 KEDZIE AVE /OLYMPIAN WAY	CONG
4/10/2006	1236	70	GE06801 KEDZIE AVE./OLYMPIAN WAY	CONG
4/17/2006	280	14	GE04107 DAN RYAN SKYWAY INTER.	CONG
4/17/2006	40	2	GE04108 IDOT DAN RYAN AT WELLS	CONG
4/17/2006	44	4	GE05241 SAUK VILLAGE MFT	CONG
4/18/2006	120	6	GE06901 63RD AND HALSTED	CONG
4/19/2006	40	2	GE05209 135TH ST., CICERO-KOSTNER	CONG
4/20/2006	1227	70	GE06801 KEDZIE AVE./OLYMPIAN WAY	CONG
4/24/2006	1059	57	GE06801 KEDZIE AVE./OLYMPIAN WAY	CONG
4/27/2006	124	8	GE06201 STEGER	НОМО
4/28/2006	200	10	GE05623 USAA 700K SPEC BLDG	OTHER
4/28/2006	18	1	GMRAP FROM OUTSIDE SOURCES 112TH & TORR	CONG
4/28/2006	104	7	GE06201 STEGER	CONG
5/2/2006	93	6	GE05216 SOUTH HOLLAND STREET RESURF	CONG

Excervator with offset tooth

Closed circuit crusher/screen system

Inertia 5066 – 50" feed opening, 66" rotor diameter

Tyler/Tyrock 8 x20' two deck Incline screen

Top Deck 1" screen Bottom Deck 1/2" Veno Self Cleaning style

S. L. M. Rollsteinger

Normal Production approx. 160-220 tons per hour (1/2²² Mfinus)

Rap Shelter

RAP Shefter

•Washed extraction tests every 500tons for the first 2000 tons and one per 2000 after.

Test for Gradation and Asphalt content

	Parameter	Homogeneous/ Conglomerate	Conglomerate "D" Quality
•N	12.5mm (1/2 in.) Loistures of a 4.75mm (No. 4)	l agg±8%	and $\frac{15\%}{43\%}$ dail
199	2.36mm (No. 8)	± 5%	+ 15%
	600um (No. 30)	± 5%	1070
	75um (No. 200)	± 2.0%	± 4.0%
	AC	± 0.4%	± 0.5%

In Illinois we Classify RAP

Batch Plant with Recycle E capabilities

E2

15 Deres

Batch Plant with Recycle capabilities

E2

ſњ

12

60+1

Batch Plant with Recycle capabilities

Cold Sand bin adds sand to weigh hopper

GALLAGHER ASPHALT

Asiec Double Barrel

N-Design	Binder/Level Binder	Surface
30	30	30
50	25	15
70	15	10
90	10	10
105	0	0

No RAP in Polymer Mixes/ Shoulders up to 50%

Thornton

	RAP Processed	HMA Produced	Average % recy.
2003	92,844	431,782	21.5%
2004	77,791	408,786	19.0%
2005	137,440	591,817	23.2%
2006	85,000	463,244	18.3%

RAP Processed

Year		Joliet		
	RAP Processed	HMA Produced	Average % recy.	
2003	59,784	300,561	19.9%	
2004	78,445	344,184	22.8%	
2005	86,777	375,755	23.1%	
2006	107,000	440,248	24.3%	
10	7,000 24.3% 23.1% 86,777	59,784 19.9% 22.8% 78,445	 2003 2004 2005 2006 	

Non-Polymer Overlays

Polymer Overlays

A, B, C

Homogeneou

Homogeneous

A, B

D

Private Use or Waste

BAM Mixes

Shoulders/Agg Cap

Private use or waste

Surface Only or waste

D

A, B, C

Homogeneou

Homogeneous

D

RAP CA

A, B

PGE/Aggregate Subgrade

Non-Quality use

A, B, C Conglomerate

Allow Blends into PGE/Agg

Homogeneous

D

A, B

Blend %

A, B, C Homogeneou

A, B, C Conglomerate

Other B, C, D..? Α, Kmart.

How to measure quality on RAP

CA 6, 10, 12. "D+" Quality

Overlay PG Grades

N-Design	ESAL –M	Standard	Slow	Standing
30	<0.3	PG 58-22	PG64-22	PG64-22
50	0.3 to < 3	PG64-22	PG70-22 SBR or SBS PG70-22	SBS-PG76-22
70	3 to < 10	PG64-22	PG70-22 SBR or SBS PG70-22	SBS-PG76-22
90	10 to < 30	PG64-22	PG70-22 SBR or SBS PG70-22	SBS-PG76-22
105	> Or = 30	PG70-22 SBR or SBS PG70-22	PG70-22 SBR or SBS PG70-22	SBS-PG76-22

Polymer mixes can not be recycled

Hinois Groups Charge 2005-2006

Retain quality & performance

Strive for highest value use

Create policies that have economic sustainability

Protect the environment

Training for local agencies on RAP specification

Progress has been made in Illinois!

N-Design	Binder/Level Binder	Surface
30	30	30
50	25	15
70	15 25%	1015%
90	10 10%	1010%
105	0 10%	0 10%

RAP in Polymer Mixes/ Shoulders up to 50%

Overlay Re Grades

N-Design	ESAL –M	Standard	Slow	Standing
30	<0.3	PG 58-22	PG64-22	PG64-22
50	0.3 to < 3	PG64-22	PC70-22 SBR	SBS-BC76-22
70	3 to < 10	PG64-22	R 2 SB 5 PG70-22	SBS-PG76-22
90	10 to < 30	PG64-22	PG70-22 SB P	STO 76-22
105	> Or = 30	PG70-22	P SBR USOS PG70-22	SP1076-22

Polymer mixes can not be recycled

TTT 10 - 0 - TTT 0 - 0 - TTT 00 0-0-00 0-0-00 000 10 0 0 WTTH OVER 0-0-00 מ שרימיים שרימיים שרימיים ש DT-10-0 DT-10-0 DT-10-0 DT-10-0 DT 0-00-00 00-10-00 00-00-00 00-10-0 שרומים שרומים שרימים שרימים שרימים שר 0-0-00 00-00 00-00 00-00 00-00 00-00-00 0-0-0-00 00-0-00-00-00 30,000 Tons of RAP ומים שרומים שרימים שרימים שרימים שר

70 - 6,000 Gallon Transport Trailers and 28,200 Tons of Clean Aggregate

RAP is Worth the Virgin Material It Replaces

PG Grade	Cost	Increase from PG64-22	Mix Increase*
64-22	\$400	\$0	\$0.00
58-22	\$425	\$25	\$1.5
70-22	\$500	\$100	\$6.00
76-22	\$525	\$125	\$7.50
76-28	\$570	\$170	\$10.20

*Does not include plant considerations

PG Grade	Cost	Increase from PG64-22	Mix Increase*
64-22	\$400	\$0	<mark>\$0.00</mark> (\$5.00)
58-22	\$425	\$25	<mark>\$1.5</mark> (\$5.31)
70-22	\$500	\$100	\$6.00 (\$6.25)
76-22	\$525	\$125	\$7.50 (\$6.56)
76-28	\$570	\$170	\$10.20 (\$7.13)

Asphalt binder savings based on an average AC content of 5% liquid in RAP and blending 25% Rap in mix.

*Does not include plant considerations

Mix cost savings

	Vir	<mark>gin Surfa</mark>	ce	
<u>Material</u>		<u>\$/ton</u>	<u>%</u>	<u>Mix cost</u>
Aggregate cost	\$	10.00	94.0%	\$ 9.40
Asphalt cost	\$	410.00	6.0%	\$ 24.60
		Total	mix cost	\$ 34.00
	Re	cycle Sur	face	
<u>Material</u>		<u>\$/ton</u>	<u>%</u>	<u>Mix cost</u>
<u>Material</u> Aggregate cost	\$	<u>\$/ton</u> 10.00	<u>%</u> 70.25%	<u>Mix cost</u> \$ 7.03
<u>Material</u> Aggregate cost Asphalt cost	\$ \$	<u>\$/ton</u> 10.00 410.00	<u>%</u> 70.25% 4.75%	<u>Mix cost</u> \$ 7.03 \$ 19.48
<u>Material</u> Aggregate cost Asphalt cost RAP*	\$ \$ \$	<u>\$/ton</u> 10.00 410.00 5.75	<u>%</u> 70.25% 4.75% 25%	<u>Mix cost</u> \$ 7.03 \$ 19.48 \$ 1.44
<u>Material</u> Aggregate cost Asphalt cost RAP*	\$ \$	<u>\$/ton</u> 10.00 410.00 5.75 Total	<u>%</u> 70.25% 4.75% 25% mix cost	Mix cost \$ 7.03 \$ 19.48 \$ 1.44 \$ 27.94
<u>Material</u> Aggregate cost Asphalt cost RAP*	\$ \$ \$	<u>\$/ton</u> 10.00 410.00 5.75 Total	<u>%</u> 70.25% 4.75% 25% mix cost	<u>Mix cost</u> \$ 7.03 \$ 19.48 \$ 1.44 \$ 27.94

Who Saves the \$6.07/ton?

The Contractor?

The DOT/Customer? Some split between the two.

I think it depends on your market....

What has RAP saved the tax payers of Illinois 2003-2006

Thornton – 393,075 tons of RAP
Joliet – 332,006 tons of RAP
Total – 725,081 tons of RAP in 4 years

This will produce 2,900,324 tons of HMA at 25% RAP

What has RAP saved the tax payers of Illinois 2003-2006

NAPA Recycling Task Force

Communicate the Economic\$ of Recycling.

Develop Guidelines on higher RAP content

Conduct a technology transfer program.

Equipment
Mix Design

mixes.

- Research

End the misperceptions that RAP mixtures are inferior to Virgin!

Good Control of incoming material

-Strong processing controls on RAP

•Sound Mix Designs using RAP

Quality Control in production and laydown

•Continue to do more research and

share experiences

Linois. Future with Shingles?

Did you Know?

"Our experience to date has shown that recycling of asphalt pavements offers a design alternative that provides the state a cost effective and energy efficient method of utilizing existing resources, while at the same time not sacrificing the quality of the resulting pavement system."

Charles F. Potts, P.E. State Materials and Research Engineer Florida Department of Transportation

Thank you to David Lippert for inviting me to speak in Minnesota

in Januaryl

Any questions?

